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Abstract

Expressions exist in the literature for the sediment flux above a bed of grains in terms of the
grains’ diameter and the velocity of the surrounding fluid [4, p. 268; 1, p. 335]. These generally
neglect the effects of cohesion between the grains and the bed: by adapting the derivation of
Andreotti, Forterre & Pouliquen [1, p. 324] for the threshold fluid velocity for particle
entrainment, we obtain a cohesive expression for the sediment flux. The migration rate of
quasi-two-dimensional dunes is measured experimentally and found to substantiate existing
theories. These are compared to a cohesive model, which proves to match the data more closely,
although due to inadequate data this result is inconclusive — albeit suggestive.

i · introduction

Dunes are a naturally occurring phenomenon
wherever the motion of a granular sediment is
dictated by the flow of an ambient fluid. They
range in size from the small subaqueous ripple
marks found in the shallows of beaches to the
large roaming dunes of the Curonian spit, which
have been known to bury the occasional village.
Able to form under the influence of the wind
just as well as under that of water currents, dunes
form a rich typology, from the characteristically
crescent-shaped barchan dune, to the largely two-
dimensional contour of transverse dunes, to even
more complex structures such as the poetically-
named star dune [20; 18].

Sediment transport in dunes has been a topic
of active study since the mid-thirties [19]; re-
searchers seek for example to quantify how dunes
develop, how they interact and, notably, how they
locomote. But sand varies from desert to desert,
and it is still not clear how these behaviours de-
pend on the exact properties of the sediment
composing the dunes.

For this project, we have chosen to study the
migration rate of a dune in a narrow channel,
and its dependence on the size of its constitu-
ent grains. Such quasi-two-dimensional dunes
model large transverse-dune fields, or the central
cross-section of a crescent-shaped barchan dune.
By collecting data on dunes of a number of sizes
and monodisperse granular compositions, subjec-
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ted to increasingly rapid flows, we substantiate
a more general, cohesive theoretical prediction
for the dependence of the migration rate of the
dune on the diameter of its grains.

ii · theoretical

predictions

Two-dimensional dunes will have some topo-
graphy ℎ(𝑥, 𝑡) in a static frame of reference. Sed-
iment moves over this topography from the tail
to the crest of the dune, and subsequently ava-
lanches over the lee slope; we locally quantify this

movement by the particle mass flux 𝑞(𝑥, 𝑡) [ kg
m s].

Writing down the equation for mass conserva-
tion of the dune yields the E x n e r e q u a -
t i o n [10]:

𝜚g𝜙
∂ℎ
∂𝑡 +

∂𝑞
∂𝑥 = 0. (1)

A neat trick [5] now consists in transforming to
a coördinate frame comobile with the dune (𝑥′ =
𝑥−𝑐𝑡, 𝑡′ = 𝑡); then, assuming time-similarity of
the topography in this new frame (∂ℎ/∂𝑡′ = 0),
we obtain a modified equation

∂𝑞
∂𝑥′ = 𝜚g𝜙𝑐

∂ℎ
∂𝑥′ .

This expression can be integrated to give the rule

𝑐 =
Q − ϙ

𝜚g𝜙H
, (2)

where H = ℎ(crest) is the height of the dune,
Q = 𝑞(crest) the sediment flux across the crest
and ϙ = 𝑞(tail) the influx at the tail. This last
quantity we assume to be negligible compared to
Q (on the order of a few grains a second).

If we further assume the mobile layer to con-
sist of grains of uniform diameter 𝑑 moving at

a uniform speed 𝑢g, we can split the saturated
mass flux into a particle flux 𝑛 [m−2] and a grain
velocity 𝑢g — that is to say,

𝑞sat ≃
π
6𝜚g 𝑑

3 ⋅ 𝑛 ⋅ 𝑢g, (3)

— and individually address these two terms.
Grain speed.— The grain speed is governed

by a balance between the propulsive (drag) and
resistive (friction) forces. We suggest that the
cohesive property of the granular medium, whilst
weak, is sufficient to have a visible effect on the
migration rate; we hence set our force balance to
be

𝜇k Fweight + 𝜇k Fcohesion = Fdrag. (4)

For the cohesive force, we postulate an expres-
sion of the form F ≃ πγeff𝑑.* Substituting this
expression into (4) along with expressions for
the drag and weight, we obtain

π
6𝜇k(𝜚g − 𝜚f )𝑔𝑑

3 + 𝜇kπγeff𝑑

≃ π
16C∞𝜚f (𝑢∗ − 𝑢g)

2
𝑑2, (5)

where we denote 𝑢∗ the turbulent shear velocity
of the fluid flow. Note that when the fluid is
at the threshold velocity 𝑢∗th, the grain velocity
must be zero (and the friction coëfficient static);
substituting these values and rearranging leads
to an expression for the threshold velocity of

𝑢∗th ≃ √
8𝜇s
3C∞

((
𝜚g
𝜚f
− 1)𝑔𝑑 +

6γeff
𝑑 ).

*The van der Waals force between a sphere and a wall in
contact is FvdW ≃ Η𝑑/6𝑧20 where 𝑧0 is the (intermolecu-
lar) surface-to-surface separation and H the Hamaker
constant [15]. The linear dependence of the cohesive
force on 𝑑 can alternatively be derived as a difference in
surface tension following from variations in contact area
of the grains during displacements [1, § 2.2.2].
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This can be rephrased in terms of a cohesive
length scale

𝑑γ ∶= √
6γeff

(𝜚g − 𝜚f )𝑔
as (6)

𝑢∗th ≃ √
8𝜇s
3C∞

(
𝜚g
𝜚f
− 1) 𝑔𝑑 (1 + (

𝑑γ
𝑑 )

2

). (7)

Since in (5) the left-hand side is constant for
any fluid velocity 𝑢∗ > 𝑢∗th the right-hand side
cannot have any dependence on it, and we must
conclude that the right-hand side is a constant
multiple of the square of the threshold velocity:

(𝑢∗ − 𝑢g)
2
= 𝜇k ⋅

1
𝜇s
𝑢2∗th

⟹ 𝑢g = 𝑢∗ − √
𝜇k
𝜇s
𝑢∗th. (8)

We denote by ʊ the quantity √𝜇k𝜇s .
⁑

Particle flux.— This is difficult to calculate,
and derivations are largely heuristic. One tradi-
tional argument is the so-called t r a n s p o r t -
i n g m a c h i n e by Bagnold [4; 3], in which
the mobile layer is a moving carpet lubricating
the immobile layer. We instead choose to use the
derivation by Andreotti, Forterre & Pou-
liquen [1], which models a single mobile layer
subjected to a stress τ from the ambient fluid;
this layer then exerts a stress τb on the immobile
layer below it. The resulting stress balance is

τb = τ − 𝑛 ⋅ 𝜇k (Fweight + Fcohesion). (9)

It is claimed [1, p. 334] that equilibrium is
reached when the bottom layer is at the transport

⁑ Allowing for ʊ ≠ 1 in this derivation resolves a technic-
ality regarding the threshold, as experimental evidence
suggests that the grain velocity does not vanish at the
threshold, unlike the grain flux 𝑛 [8; 1, p. 334]. (N. b. —
in [1], Υ = ʊ2.)

Figure 1: The apparatus (tank, spider, cameras).

threshold, i. e. τb = τth. Using the heuristic that
τ ≃ 𝜚f 𝑢2, we can rearrange to find an expression
for 𝑛 in terms of 𝑢∗ and 𝑢∗th, into which we can
substitute the same forces as in (5) to obtain

𝑛 = 6/π
𝜇k𝑑2

(1 + (
𝑑γ
𝑑 )

2

)
−1
𝑢2∗ − 𝑢2∗th
(
𝜚g
𝜚f − 1)𝑔𝑑

. (10)

Saturated flux.— We can combine our new-
found expressions for the grain velocity (8) and
for the particle flux (10) with (3) to obtain an
expression for the saturated flux

𝑞sat ≃
𝜚g
𝜇k
(𝑢∗ − ʊ𝑢∗th) (𝑢2∗ − 𝑢2∗th)

(1 + (
𝑑γ
𝑑 )
2
) (

𝜚g
𝜚f − 1) 𝑔

. (11)

This is now ripe for inclusion in (2) to yield a
prediction for a dune’s migration rate:

𝑐 ≃ 1
𝜇k𝜙H

(𝑢∗ − ʊ𝑢∗th) (𝑢2∗ − 𝑢2∗th)

(1 + (
𝑑γ
𝑑 )
2
) (

𝜚g
𝜚f − 1) 𝑔

, (12)

in which spatially-dependent quantities are eval-
uated at the crest and the influx ϙ is neglected.
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iii · experimental

apparatus

A photograph of the experimental apparatus is
presented in fig. 1. An open annular flume or
tank of external radius 97 cm, width 9 cm and
depth approximately 50 cm rotates on a powered
turntable. Above the tank rests a frame, called
the s p i d e r, which holds twelve 8 cm × 10 cm
paddles of adjustable height — fixed, in this
experiment, at c. 34 cm above the floor of the
tank.⁂ Both assemblies are controlled inde-
pendently and are counter-rotated to generate
a flow within the flume, minimising the effect
of fictitious forces.

The flume was filled with water to a depth of
approximately 1 cm above the top of the paddles,
and a heap of either 1, 1.5 or 2 litres of granu-
lar material was placed into the tank in such a
way as to form a symmetrical heap at the angle
of repose. The material consisted of soda-glass
ballotini of specific gravity nominally 2.55 kg/l,
which we verified experimentally to be correct
within approximately one part in twenty.† Four
diameters were used, marked by the supplier as
𝑑1 = 0.4–0.6mm, 𝑑2 = 1.0mm, 𝑑3 = 2.0mm
and 𝑑4 = 3.1mm. These were not independently
verified.‡ The set-up was spun at four total rota-
tion rates Ω between 11.0 and 15.5 rpm, main-
taining a ratio of approximately −1.35 between
the rotation of the table and that of the spider
(table 1). We performed in total forty-eight ex-
perimental runs.

The experiment was started from rest and ran
continuously for 25min. Data were captured

⁂ For Karol: this has the rods jutting 26 cm above the spider.
† This we achieved by exploiting the change in weight of
a graduated cylinder initially filled with grains to which
we subsequently added water to a known volume.

‡ A more detailed description may be available soon, a
sample of the particles having been sent for analysis.

Ω Ωspider −Ωtable ∣
Ωspider

Ωtable
∣

11.0 6.3 4.7 1.34
12.5 7.2 5.3 1.36
14.0 8.1 5.9 1.37
15.5 8.9 6.6 1.35

Table 1: Rotation rate decomposition [rpm].

from two fixed cameras: one provided uninter-
rupted footage of the experiment at 200 fps, and
was used to obtain the height of the granular bed-
form in the flume, accurate to individual milli-
metres; the other camera took twelve 2000 fps-
snapshots of the bed-form at intervals of approx-
imately two minutes, providing data for the ve-
locimetry. For every snapshot we took an average
of the horizontal component of the velocity in a
region of about 5.5 cm in height beginning 1 cm
above the back of the dune, using the methodo-
logy developed by Bacik et al. [2]. We then took
an average of this quantity over the last eleven
snapshots to obtain our analogue 𝑣 for the turbu-
lent shear velocity 𝑢∗. We expect this quantity to
be a constant multiple of the turbulent shear ve-
locity and will use it exclusively in our treatment
of the experimental data as a proxy for 𝑢∗.§

iv · results

The footage from the continuous capture was
split into an integer number of data sets, referred

§ Assuming above the bed a logarithmic velocity profile
𝑢(𝑦) = 𝑢∗

κ log( 𝑦д ) uniform along the flume (where κ is
von Kármán’s constant and д the surface roughness) [7],
the conversion rule is

𝑣 = ⟨𝑢⟩ = 1
𝑏 − 𝑎

𝑏

∫
𝑎

𝑢 = 𝑢∗ ⋅ [
д/κ
(𝑏 − 𝑎)

𝑏/д

∫
𝑎/д

log ],

for appropriate bounds 𝑎 and 𝑏.
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Figure 2: An example plot whence is calculated
the migration rate.

to as p r o f i l e s , corresponding to individual
tank rotations with a branch cut provided by a
distinguished point on the table. From these
we can extract the height of the sediment at
discretised intervals along the flume to generate
space-time diagrams such as that in the appendix
(fig. 14, p. xvii). The position of the highest
point of the sediment is then tracked to provide
a reference position for the dune; plotting this,
we obtain summaries of the dune’s motion (fig. 2;
also figs. 15 and 16). We note that after an initial
shape transition the dune progresses at a constant
rate: an affine fit is appropriate. To optimise the
accuracy of the fit, we wish to choose a point
at which to begin fitting that is in the steady
state for all experimental runs; to that end, we
can track locally two quantities we expect to be
stable in the steady state, and verify that they
settle to a constant value. Figures 3 and 4 show
this stabilisation; we choose to begin fitting at
profile number 20.
We can read off the gradient of the affinely

fitted position to provide the migration speed of
the dune along the flume for that run. The dune
height H is averaged over all heights measured
throughout the experimental run, once judged to

Figure 3: Dune height over time, plotted for all
the experimental runs. The height always appears
to have settled by profile no 20.

Figure 4: Local dune speed over time, plotted
for all the experimental runs. This is calculated
through a method of differences.
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𝑑 𝑘1/103 𝑘2
𝑑1 1.032 0.405
𝑑2 1.571 0.448
𝑑3 1.921 0.569
𝑑4 2.476 0.585

Table 2: Values for 𝑘1 and 𝑘2 = 𝑣th. We have
fixed the friction ratio ʊ2 = 0.4976.

be in the steady state by the aforementioned cri-
terion. To verify the expression for 𝑐 given in (12),
we require the knowledge of three quantities: ʊ ,
𝑑γ and 𝑢∗th. These will be left as free parameters
in our fits. The former two are expected to be
constant throughout the experiments, whereas
the last is expected to depend on 𝑑 (v. (7)). Ref-
erence values suggest ʊ2 = 𝜇k/𝜇s ≈ 1/2 [14].
To verify this, we plot 𝑐H against the fluid velo-
city 𝑣 obtained from the velocimetry; we then
use the Matlab routine lsqcurvefit to fit a
model of the form

𝑐H = 𝑘1 (𝑣/𝑘2 − 𝑘3) (𝑣2 − 𝑘23)

to every set of particle diameters (fig. 5). The
coëfficients represent the quantities as

𝑘1 = (𝜇k𝜙𝑔ʊ(1 + (
𝑑γ
𝑑 )

2

)(
𝜚g
𝜚f
− 1))

−1

,

𝑘2 = ʊ and 𝑘3 = 𝑣th.

The fit yields four values of 𝑘23 for the four
diameters 𝑑1–𝑑4, of about 0.4928, 0.4947, 0.5012
and 0.5016 respectively. Hence we now run the
analysis again with 𝑘23 fixed at the mean of these
values, or approximately 0.4976. We obtain the
fits depicted in fig. 6, whose parameters are those
given in table 2. This gives our estimates for
the 𝑣th.

Figure 5: Three-parameter fitting.

Figure 6: Two-parameter fitting (ʊ2 = 0.4976).
From this we extract the intercepts for 𝑣th.
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We have decided, for better or for worse, to
keep 𝑑γ as a free parameter (as recommended
in [1]). This we estimate from the relatively
simpler prediction (7) we have for the threshold
shear velocity

𝑢∗th ∝ √𝑑 (1 + (
𝑑γ
𝑑 )

2

), (13)

since this expression is on more solid theoretical
ground than that for the particle flux 𝑛. The
data we have at our disposal for this plot are,
however, woefully inadequate: we must content
ourselves with four points, which are themselves
calculated by fitting. Ideally, we would have ex-
perimental data available for a wider range of
particle sizes, with particularly fine resolution
around the expected minimum, — or even an
entirely different method, empirical or theoret-
ical, — to obtain 𝑑γ. However, things being as
they are, we must continue regardless.
To utilise (13), we plot our estimates for 𝑣th

against 𝑑,¶ to which we fit a curve

𝑣th = 𝑙1√𝑑 (1 + (
𝑙2
𝑑)

2
)

— a curve reassuringly similar to that repor-
ted empirically in [5]. For reference, fig. 7 also
includes a fit with 𝑙2 fixed at zero (incohesive
case). From the cohesive fit, we obtain a value
𝑑γ ≈ 0.7mm.
Thus armed, we are in a position to begin

verifying the predictions of (12), which we recast
as

𝑐H𝑣−3th (1 + (
𝑑γ
𝑑 )

2

) ∝ ( 𝑣𝑣th
− ʊ) ( 𝑣

2

𝑣2th
− 1).

¶ The plots use [𝑑1 𝑑2 𝑑3 𝑑4] = [0.5 1.0 2.0 3.1].
These numbers may be refined with a detailed analysis
of the grain distributions.

Figure 7: Threshold velocity in terms of particle
diameter. This plot is used to obtain an estimate
for 𝑑γ. Shown on the plot are (i) a fit for an in-
cohesive prediction (𝑙2 ≡ 0), (ii) the full cohesive
fit and (iii) the large-diameter limit for (ii). Note
that (i) is the best fit of type 𝑣th = 𝑙1 𝑑1/2, whereas
(iii) merely uses the same 𝑙1-value as (ii).

We hope to obtain a linear relationship between
the left-hand side and the right, which we plot
in fig. 8. A logarithmic version of the same re-
lationship is depicted in fig. 9. These two plots
are to be contrasted with their corresponding
incohesive versions, which have 𝑑γ set to nought
(figs. 10 and 11).

We see the data form a reasonably straight
line, as predicted, and in fact the cohesive plot
better fits the theoretical prediction than does
the plot which ignores cohesion (R2 = 0.9578
vs R2 = 0.8491). Our cohesive fit is less accurate
for smaller values of the grain diameter; this is
only to be expected, since diameters near the crit-
ical diameter 𝑑γ are more sensitive to error in 𝑑γ.
Despite the possibility that our extracted value
for 𝑑γ not be better than an order-of-magnitude
estimate, the fact that the fit is best with the
correction is a promising indicator of the need
for a cohesive term.
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Figure 8: A candidate master curve. Superposed
is also the gradient of best fit.

Figure 9: The candidate master curve, plotted
logarithmically. Overlain is the best-fitting affine
line of gradient one.

Figure 10: An incohesive version of fig. 8.

Figure 11: An incohesive version of fig. 9.

iv.1 Criticism

Of the data.— A number of parameters are ob-
tained by fitting to data. Whereas one of these
(ʊ) closely matches the theoretical prediction and
is regularised by drawing on four sets of data, two
others are of fickler standing. Every threshold
velocity 𝑣th is obtained from twelve data points;
the value for 𝑑γ, from only four. The correction
term

(1 + (
𝑑γ
𝑑 )

2

)
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is quite sensitive to which side of unity the ra-
tio 𝑑γ/𝑑 lies, and as such our data cannot hope
to adequately illustrate the predicted relation-
ship between the desired quantities. It would
be preferable to measure 𝑣th independently —
using an experiment better tailored to it, over a
greater range of judiciously chosen particle dia-
meters — and utilise those values to calculate
the cohesive length scale 𝑑γ and thence validate
the theoretical prediction for our data. Despite
these shortcomings, we find visible agreement
with our prediction for particles sufficiently high
above the characteristic length of cohesion.

Of the theory.— Perhaps the least satisfactory
component of our derivation for 𝑐 is in the treat-
ment of 𝑛. Beyond its reliance on shear stresses,
the derivation is flawed in that it assumes the
presence of a single layer of mobile grains. This
is not borne out experimentally: at faster rates of
rotation, our dunes appeared to have in motion
a layer of up to three times the grain diameter.
Indeed, it is difficult to speak of individual layers
moving, and a theory of 𝑛 would have recon-
cile the continuum of the layer with the discrete
nature of the moving grains. We furthermore
expect the grains, which are almost stationary
in the immobile layer and reach a maximum at
the surface of the bed-form, to exhibit a profile
of grain velocities 𝑢g, and a more sophisticated
theory would account for this as well [13].

v · addenda

v.1 Alternative for 𝑑γ

If instead of attempting to extract 𝑑γ from the
threshold-velocity data, we look at which value
of 𝑑γ between 0.01 and 1mm (in increments

Figure 12: Another candidate for a master curve
(c. f . fig. 8). The parameter 𝑑γ has been adjusted
to provide the best possible R2 with a resolution of
ten microns.

Figure 13: The logarithmic plot corresponding
to fig. 12.

of 0.01mm) produces the best fit for

𝑐H𝑣−3th (1 + (
𝑑γ
𝑑 )

2

) ∝ ( 𝑣𝑣th
− ʊ)( 𝑣

2

𝑣2th
− 1)

in terms of R2-value, we find 𝑑γ ≈ 0.49mm
(plotted in figs. 12 and 13). This is of the same or-
der as our original prediction of 𝑑γ ≈ 0.70mm.
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v.2 Nondimensionalisation

The Shields number is defined to be a non-
dimensional shear stress [1]

Θ ∶= τ
(𝜚g − 𝜚f )𝑔𝑑

. (14)

If we postulate a velocity-dependent shear stress
τ ≃ 𝜚f 𝑢2∗, we obtain a conversion from our fluid
velocity to the Shields number,

Θ = 𝑢2∗
(
𝜚g
𝜚f − 1)𝑔𝑑

. (15)

Then we can partly nondimensionalise (12) to

𝑐H ≃ 𝑑
𝜇k𝜙

√(
𝜚g
𝜚f
− 1)𝑔𝑑/(1 + (

𝑑γ
𝑑 )

2

)

⋅ (√Θ − ʊ√Θth) ⋅ (Θ − Θth).

If we further relabel ℌ ∶= H/𝑑 the height of

the dune in grain diameters, 𝔊 ∶= (𝑑/𝑑γ )
3/2

a

nondimensional cohesive effect,☞ and

ℭ ∶= 𝑐

√(
𝜚g
𝜚f − 1)𝑔𝑑

a nondimensional bed-form migration rate, we
obtain the following nondimensional relation-
ship:

ℭ ≃
(√Θ − ʊ√Θth) ⋅ (Θ − Θth)

𝜇k𝜙ℌ (1 +𝔊−4/3)
. (16)

☞ By analogy with the Galilei number

Ga ∶= ( 𝑑𝑑ν
)
3/2
= √(

𝜚g
𝜚f
− 1)𝑔𝑑3/ν2

as defined in [17], where

𝑑ν ∶= 3√
ν2

(
𝜚g
𝜚f − 1)𝑔

is a characteristic viscous diameter [1].

We can also reformulate (7) nondimensionally
to give a threshold Shields number

Θth =
8𝜇s
3C∞

(1 +𝔊−4/3) (17)

which agrees with the expression in [1].

v.3 Extensions

There are a number of improvements available,
which have been abandoned due to constraints
on the extent of the project. These include:

(i) An error analysis on the data.— We have
reasonable estimates on the errors of all
our quantities: it should merely be a matter
of carrying them through.

(ii) Consistency checks on the experimental
runs.— It is advisable to verify reprodu-
cibility of our data on the migration rate by
picking one experiment and running it per-
haps five more times to see that the dune
settles into the same steady state.

(iii) Robust dune tracking.— To obtain the pos-
ition of a dune, we have tracked its highest
point. This measurement is sensitive to
variations on the order of individual grains,
and hence in some experiments is seen to
oscillate irregularly with amplitude on the
order of five centimetres. A more robust
measure would be to compute the centre of
mass of the dune by integrating∫𝑥ℎ(𝑥) d𝑥
numerically. A similar procedure would al-
low an independent estimate of the dune’s
volume, though this is liable to fail under
spanwise asymmetry.

(iv) Sanity checks on coëfficients.— In the course
of our fits, we obtain a number of prefactors
(figs. 8 and 9) which are predicted in the
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theory in terms of 𝜙, 𝜇k, 𝜚g/𝜚f , etc. These
can be compared to the fitted prefactors to
establish whether they correspond to the
theory (if only in order of magnitude).

(v) Literature review on ʊ.— The values on we
based our initial estimate of ʊ are reference
values for dry flat surfaces of glass in con-
tact. Are these numbers appropriate for
hydraulically lubricated spheres? It is not
clear that this is the case.

(vi) Particle influx.—We have assumed that the
influx of particles ϙ at the tail is negligible.
This could be quantified using footage we
already have from the velocimetric camera.

(vii) Slope effects.— Throughout our derivation,
we assume that the grains lie on a flat ho-
rizontal bed. This assumption is justified
by the fact that we only ever evaluate the
saturated sediment flux 𝑞sat at the crest of
the dune, which is no more than a handful
of degrees off the horizontal. However, a
more detailed model might consider the
presence of a more marked slope at the
dune’s tail.

(viii) Data by Julien [16], Fernandez Luque
& Beek [11] (as reported in [1, fig. 8.9])
show agreement with the model

log(
𝑞sat

√(
𝜚g
𝜚f − 1)𝑔𝑑

3
) ∝ log(Θ − Θth).

It would be interesting to reëvaluate their
data (if available) in the light of our analysis
and explore the data’s agreement with our
model.

v.4 Recommendations

A subsequent project might choose to draw on
tributaries of this one. To that end, here is a list
of suggested areas of enquiry:

(i) In our expression for the migration rate 𝑐,
we have a term entirely unaccounted for:
the packing fraction 𝜙. We have assumed
that this remains constant. It might be
of interest to explore how the density of
the dune as a system varies with various
parameters, and thus establish the status
of 𝜙.

(ii) A significant drawback in our experiments
has proved to be our inability to compute
a good estimate for the cohesive length
scale 𝑑γ. It would benefit the theory greatly
to investigate the exact value of this length
scale in subaqueous bed-forms, either by
performing the same experiments with a
greater range of diameters in the range
0.1–1mm or by developing a new method
entirely (perhaps by looking at the angle of
repose).

(iii) Finally, we have assumed for our derivation
an entirely turbulent regime, which holds
as a first approximation: we operate at a
characteristic viscous length scale

𝑑ν ∶= 3√
ν2

(
𝜚g
𝜚f − 1)𝑔

≈ 3√10
−12

1 ⋅ 10 ≈ 50 µm,

and at an approximate particle Reynolds
number of

Re ∶= 𝑢∗𝑑ν ∼ 10
−1 ⋅ 10−3
10−6 = 100

xi



(order of magnitude estimate).※ Whilst
the first number a priori suggests negli-
gible viscous effects, the latter implies a
regime not entirely turbulent: it would be
interesting to explore the effect of a viscous
correction to the model. Such a correction
would consist of an adjustment of the drag
coëfficient — Andreotti, Forterre &
Pouliquen [1] predict

C∞ ↦ Cd = (√C∞ + 𝑘√Re )
2

— as well as of the addition to the force
balance of a viscous term proportional to
Stokes drag 3πη𝑢∗𝑑.

vi · summary

From preëxisting theory, we have derived an ex-
pression for the dune migration rate which takes
into account the frictional contribution of the
cohesive force between the grains in the mobile
layer and the rest of the bed-form. We ran forty-
eight experiments, varying the diameter of the
grains, the size of the dune and the velocity of the
surrounding fluid. Fitting the model to the data,
we found a better fit for the cohesive model than
for that lacking in a cohesive term (R2 ≈ 0.96
against R2 ≈ 0.85). One parameter of our fits
— the cohesive diameter 𝑑γ — is associated with
high uncertainty, and it is a matter of interest
for further research to establish its exact value
and properties.

※ The conversion from 𝑣 to 𝑢∗ is obtained from f n §
(p. iv) with 𝑎 ∼ 10−2, 𝑏 ∼ 6 ⋅ 10−2, κ ∼ 10−1 and
д ∼ 𝑑/30 ∼ 10−4, yielding 𝑢∗ ∼ 10−1 𝑣 ∼ 10−1.
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a · additional figures

a.1 Sample plots

We include here three more sample plots: one
to exemplify the three-dimensional wrap-around
plot which is used to circumvent the inconveni-
ence of a branch cut (fig. 14); and the latter two
to show the level of variation we experience in
the tightness of the fits to find the migration rate
(figs. 15 and 16).

Figure 14: An example space-time diagram.
Data have been repeated then pruned to circum-
vent doublets due to the periodic nature of the tank.

a.2 Comparing 𝑣 and Ω

A note on 𝑣 and Ω.— Throughout the analysis,
we have used our velocimetric quantity 𝑣 instead
of the driving rotation rateΩ, because 𝑣 is expec-
ted to relate more closely to the turbulent shear
velocity 𝑢∗, which features in all of the theory.
It is reasonable to ask, however, how the flow
in our tank relates to its rate of rotation Ω. To
that end, we plot one against the other in fig. 17.

Figure 15: A particularly good run.

Figure 16: Wider variation in the position. We
believe this to occur with large flat dunes, where the
maximum of the bed-form is influenced by differ-
ences on the order of one grain.

We find a relationship that is reasonably affine
in the region of interest. Though it is expec-
ted that these two quantities should therefore
be — within reason — interchangeable, we find
the quality of our fits significantly reduced if we
attempt to use Ω (v. fig. 20, p. xx).

b · dune height

We reproduce scaled plots of the heights used in
the data analysis. These are rescaled to compare
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Figure 17: Response of the fluid in the tank to
rotation.

dunes of different heights: for shape-invariant

dunes, V ≃ H2, so any variation in H/√V be-
trays variation in the dunes’ shape. Since our
measurements for mass are of better accuracy, we
use mass as an analogue for volume. The values
of the mass are in table 3, with 𝑚1, 𝑚2 and 𝑚3
corresponding to the three sizes of dunes we
considered (V1, V2 and V3). These match very
closely for all grain sizes apart from 𝑑3 (approx.
2mm). It is not clear whether this means that
those grains pack differently, or whether it was
an oversight when measuring out the volume.
Looking at figs. 18 and 19, it is interesting

to note that the height is not quite constant:
for all but the smallest grains, the heights are
ordered as V3, V2 then V1. This suggests that
smaller dunes may be somewhat steeper than
larger ones; alternatively, it could be an artefact
of varying packing fraction. The idea that dunes
are not scale invariant is not alien to Franklin
& Charru [12], who find an empirical fit H ∝
L−L0 appropriate. Figure 19 is quite interesting:
it appears that the relative height is not constant
but instead increasing with fluid velocity, up to
a point.

𝑑 𝑚1 [kg] 𝑚2 [kg] 𝑚3 [kg]

𝑑1 1.586 2.400 3.194
𝑑2 1.584 2.326 3.137
𝑑3 1.745 2.634 3.533
𝑑4 1.562 2.326 3.124

Table 3: The masses of the dunes in different runs.
All numbers are given to a precision of ± 0.005 kg.

Figure 18: Scaled dune heights. The mass 𝑚𝑖
(𝑖 ∈ [3]) is used as an analogue for the volume V𝑖,
for its greater accuracy (± 0.005 kg).

Figure 19: Scaled dune heights plotted against
rescaled fluid velocity, for reference.
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H Ω1 Ω2 Ω3 Ω4

V1

𝑑1 4.81 4.91 4.70 4.33
𝑑2 5.11 5.38 5.57 5.63
𝑑3 4.30 4.85 5.08 5.24
𝑑4 4.03 4.40 4.66 4.80

V2

𝑑1 5.71 5.92 5.81 5.49
𝑑2 5.91 6.23 6.49 6.60
𝑑3 4.85 5.60 6.00 6.13
𝑑4 4.53 5.03 5.46 5.63

V3

𝑑1 6.41 6.57 6.61 6.35
𝑑2 6.56 6.95 7.20 7.23
𝑑3 5.17 6.11 6.59 6.76
𝑑4 4.94 5.48 6.07 6.26

Table 4: The dune height H for every different
run. Heights are expressed in centimetres.

b.1 Raw dune heights

Reproduced in table 4 are the dune heights meas-
ured for every individual run.
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